MASSIVE PANNICULECTOMY: A NOVEL METHOD OF TREATMENT OF POSTLAPAROTOMY WOUND DEHISCENCE IN MORBID OBESITY

It was with interest that we read the article “High-concentration oxygen and surgical site infections in abdominal surgery: a meta-analysis.”1 Massive liposuction and body contouring procedures are no longer primary therapeutic options for the treatment of morbid obesity owing to their complications and suboptimal results. The obvious paradigm shift has been noted to favour bariatric procedures since the advent of laparoscopic approaches over last 2 decades. Panniculectomy is a cosmetic procedure that involves the removal of excess skin and fat from the affected organ.

We performed massive panniculectomy for the treatment of postlaparotomy wound dehiscence in a morbidly obese patient. A 60-year-old woman with body mass index (BMI) of 41.7 underwent a total abdominal hysterectomy for dysfunctional uterine bleeding. A surgical site infection and dehiscence involving skin and subcutaneous layers across the complete length of incision developed in the immediate postoperative period. The initial treatment at the primary centre involved drainage, debridement and regular dressings.

The patient was referred to our centre for further management in postoperative week 4. Upon clinical examination, we observed that the abdomen skin fold was thick and large, and it was difficult to examine the dehiscence suture line in the recumbent position (Fig. 1A). The bacteriological study of culture and sensitivity from the abdominal wound was unremarkable; blood work was essentially normal. After counselling the patient and her relatives, a decision was made to repair the wound with massive panniculectomy to remove excessive skin and subcutaneous tissue from the abdomen. The excessive abdominal skin complex incorporating the suture line and the umbilicus was removed (weighing 8.5 kg) and the procedure was completed. The duration of the surgery was 180 minutes; blood loss was minimal (100 mL). The postoperative period was uneventful and the wound healed well, with no excessive abdominal fold. The patient was able to resume her normal activities 14 days after the procedure (Fig. 1B).

Management of morbid obesity involves a trial of strict diet and exercise, followed, if unsuccessful, by one of the various bariatric surgical procedures. Plastic surgical intervention usually comprises massive liposuction and body contouring with or without lumpectomies after achieving weight loss.

Panniculectomy is a procedure that involves the removal of excess skin and fat from any part of the body. This procedure is different from abdominoplasty, which involves tightening of the muscles. Panniculectomy is done routinely after massive weight loss (e.g., after bariatric surgeries), where excessive skin and subcutaneous fat are removed to enhance appearance and improve confidence. When more than 10 lbs of tissue is removed, the procedure is known as massive panniculectomy.2,3

Abhijeet Ashok Salunke, MBBS, DNB
Assistant Professor
Department of Orthopedics
Sri Krishna Hospital
Pramukswami Medical College
Gujarat, India

K. S. Rajkumar, MS, FRCS
Department of General Surgery and Laparoscopic Services
Kovai Medical Center and Hospital
Coimbatore, Tamilnadu, India

G.I. Nambi, MS, MCh (Plastic Surgery)
Department of Plastic and Reconstructive Microvascular Services
Kovai Medical Center & Hospital
Coimbatore, Tamilnadu, India

Vikram Anil Chaudhari, MBBS, DNB (GI Surgery)
Department of Surgical Gastroenterology
Seth GS Medical College and KEM Hospital
Mumbai, Maharashtra, India

Competing interests: None declared.
DOI: 10.1503/cjs.029213
ANCILLARY TESTS TO IMPROVE THE ACCURACY OF LAPAROSCOPY IN THE DIAGNOSIS OF TUBERCULOUS PERITONITIS

It has been suggested in your journal that laparoscopy and biopsy should be deployed to diagnose tuberculous peritonitis.1 In 1993, the World Health Organization took an unprecedented step and declared tuberculosis (TB) a global emergency.1 The prevalence of extrapulmonary TB is rising, possibly related to coinfection with HIV. In patients with extrapulmonary TB, the abdomen is involved in 11% of patients.2 Tuberculous peritonitis is believed to exhibit a female predominance; other causes of abdominal pain may delay diagnosis.

Over a 2-year period, we carried out a prospective study of 92 patients admitted to the Government Medical College at Srinagar with the clinical suspicion of abdominal TB. Of these patients, 50 were subsequently proven by biopsy to have peritoneal TB.

All the patients underwent the following diagnostic tests after a thorough clinical examination: erythrocyte sedimentation rate (ESR); Mantoux test; ascitic fluid analysis for adenosine deaminase (ADA) levels, Ziehl–Neelsen staining and culture of mycobacterium tuberculosis bacilli (MTB); and contrast enhanced computed tomography (CT) of the abdomen. We then undertook diagnostic laparoscopy. Features of a positive laparoscopy included thickened peritoneum, adhesions and peritoneal tubercles, which were biopsied (Fig. 1). Our patients were mainly young adults from rural areas, with a slight female predominance. Patients presented with fever (50%), weight loss (40%), anorexia (74%), malaise/pain (80%), diarrhea (10%), vomiting (40%) and constipation (25%). Physical signs were palp (74%), tender abdomen (70%), abdominal distension (50%), abdominal mass (20%), ascitis (15%) and lymphadenopathy (8%). The Mantoux test was positive in 23 patients (46%). Anaemia was present in 84% of patients and the ESR was high in 90%.

Diagnostic laparoscopy was positive in 46 of 50 patients with biopsy-proven peritoneal TB, with a sensitivity of 92%. Contrast enhanced CT of the abdomen detected 30 of 50 cases of abdominal TB with a sensitivity of 60% and specificity of 71.42%. Ziehl–Neelsen staining for MTB of ascitic fluid was positive in only 2 patients (4%) and culture for MTB was positive in 8 cases (16%), whereas ascitic fluid polymerase chain reaction (PCR) for TB increased the sensitivity to 83.33%. Ascitic fluid analysis for ADA (> 33 U/L) showed a sensitivity and specificity of 100% and 96%, respectively. Diagnostic laparoscopy was falsely positive in 10 of 42 patients who did not have TB peritonitis.

Difficulties in the diagnosis of TB peritonitis owe to its nonspecific associated clinical features, unhelpful laboratory tests and a high level of false-negative tests (i.e., Mantoux test, Ziehl–Neelsen staining and culture of ascitic fluid and false-negative imaging). High levels of ascitic ADA is associated with TB peritonitis.1 Ascitic fluid was found clinically in only 15% of our patients, but may be available at the time of operation. Histopathology of peritoneal lesions is appropriate for diagnosing TB and to rule out other diseases, such as cancer. In the past, this required laparotomy4 even though the potential for laparoscopy was known before the advent of video laparoscopy.2

We agree with the previous report3 on the value of laparoscopy, but we found a false-positive rate of 18%. We suggest that the laparoscopic diagnosis of TB peritonitis be confirmed by histopathology of peritoneal lesions or ascitic fluid analysis for ADA greater than 33 U/L, depending on the local availability of these tests.

Muntazdin Wani, MS
Professor
Department of Surgery
Government Medical College
Srinagar, India

Shabir Ahmad Mir, MBBS, PG Scholar, Surgery
Department of Surgery
Government Medical College
Srinagar, India

Jahangeer Ahmad Bhat, MD
Department of Radiodiagnosis
Government Medical College
Srinagar, India

Hakim Adil Moheen, MBA
Kashmir University
Srinagar, India

DOI: 10.1503/cjs.032713

References