Fluid resuscitation of the trauma patient: How much is enough?

Stewart M. Hamilton, MD, FRCSC; Pat Breakey, RN, BScN*

Patient management in the prehospital resuscitative phase after trauma is vitally important to the outcome. Early definitive care remains the essential element in improving morbidity and mortality. In Canada, where a large proportion of trauma occurs at sites distant from a trauma centre, the prehospital resuscitative phase is long and has even greater potential to affect outcome. Conventional teaching about the end points of resuscitation has promoted the concept of normalization of hemodynamic parameters with maintenance of end-organ perfusion, as measured by the hourly urine output. Recent work in patients with a closed head injury and in patients with penetrating torso trauma challenge the notion that trauma patients are homogeneous with respect to these end points. In the Canadian setting of blunt injury, where a closed head injury is usually suspected and often present, the evidence from clinical studies suggests that an aggressive approach to maintaining blood pressure is warranted. In penetrating torso injury in an urban setting, there is evidence to suggest that delaying resuscitation until hemorrhage is controlled is beneficial. More Canadian clinical trials are required in this area. In the meantime, the priorities of resuscitation must be carefully assessed for each patient and pattern of injury.

Traumatic injury remains the leading cause of death for Canadians under 40 years of age. Blunt trauma from motor vehicle collisions, although declining in recent years, is the most common mechanism of injury by a substantial margin.1 Penetrating trauma from gunshot wounds or stabblings constitutes approximately 10% to 15% of major trauma cases. A large proportion of trauma victims come from...
rural Canada, and in this situation the pre-hospital resuscitation phase may be longer because of the distances involved and the related transport time. These factors contribute to the higher morbidity and mortality associated with traumatic injuries occurring in rural areas.8

Resuscitation of the injured patient in a rural setting generally begins at the scene of the incident, depending on the training of the paramedical personnel available. In the majority of these situations the patient is transferred to a local hospital, where the resuscitation is taken over by the attending family physician, the emergency physician or the surgeon. Depending on the injury complex and local capabilities, the patient receives definitive care or is transferred to a trauma centre by air or ground. Specialized transport teams exist in most jurisdictions and consist of some combination of paramedical personnel, nurses and physicians. Primary response to the collision scene by an air ambulance team with direct transfer to a trauma centre does occur close to some large Canadian urban centres such as Toronto, Calgary, Edmonton and Vancouver.

Despite advanced telecommunications and rapid transport systems, the time taken to deliver the patient to a trauma centre for definitive care is significant, amounting to a median of 5.4 hours in the University of Alberta experience (326 cases of trauma with a median injury severity score of 12 or more, excluding cases transferred directly from the scene to the trauma centre).

The standard approach to resuscitation has been promulgated through the Advanced Trauma Life Support Course, sponsored by the American College of Surgeons.1 The focus of resuscitation has been the “golden hour” (the period immediately after the injury), emphasizing the importance of airway control, assessment of breathing and maintenance of circulatory stability through the administration of intravenous fluids. The skill of paramedical personnel in controlling the airway, protecting the spinal cord, splinting fractures and establishing intravenous access is well documented.9,10 Traditional end points of resuscitation include monitoring of vital signs, oxygen saturation and end-organ function in the form of urinary output. It is generally accepted that all of these interventions are beneficial when the pre-hospital transport time is longer than 1 hour. For pre-hospital times of 30 minutes or less, experience indicates that gaining intravenous access delays transport and the amount of fluid that can be infused is inconsequential with respect to its impact on end-organ perfusion.10

With respect to fluid administration, the trauma patient population is usually considered to be homogeneous; specific end points of hemodynamic resuscitation for specific injuries are not considered. There is general consensus that a normal blood pressure and an hourly urine output greater than 1 mL/kg are appropriate resuscitation objectives for all patients being transported and before definitive care is delivered. Recent trials in head injured patients and in penetrating torso trauma suggest that the end points of resuscitation should be individualized according to mechanism of injury and injury pattern.11,12

Our purpose is to address some of the issues that support immediate resuscitation in polytrauma victims to minimize injury to the gut barrier, to emphasize the importance of avoiding periods of hypotension in patients with serious closed head injury and to review the concept of delayed resuscitation in patients sustaining penetrating torso trauma.

IMMEDIATE RESUSCITATION

The case for immediate fluid resuscitation rests primarily on the argument that in hypovolemic shock there exists a primary deficit in effective circulating fluid volume that causes inadequate cellular perfusion. In order to sustain tissue perfusion until definitive care is delivered, volume administration with isotonic crystalloids as the initial fluid has been standard practice for the past few decades. Oxygen delivery (DO_2) is a function of cardiac output (CO) times the oxygen content of blood $\text{DO}_2 = \text{CO} \times (\text{Hb} \times 1.34 \times \text{saturation} + 0.003 \times \text{PO}_2)$. Cardiac output is a function of preload, contractility and afterload. In the young patient it is primarily a function of preload (volume status) since these injury victims will have normal myocardial contractility in the absence of myocardial contusion. Afterload is reduced by the vasodilating effect of increased left ventricular output induced by optimizing preload. Oxygen content is optimized by ensuring that the saturation of hemoglobin is maintained at more than 92% and that the hemoglobin concentration is adequate. In the resuscitation phase of trauma management an optimum hemoglobin for oxygen delivery is in the range of 110 to 120 mg/L (hematocrit 33% to 37%).13 The maintenance of perfusion to vital organs in the normal range of oxygen delivery has been accepted as the top priority of resuscitation, with the sequelae of inadequate resuscitation, particularly acute renal failure, being recognized as having a significantly negative impact on outcome.12

Resuscitation and gut-barrier function

Recently, additional weight has been given to the argument favouring
early resuscitation by recognition of
the role that the inflammatory re-
sponse plays in the genesis of multiple
organ dysfunction. The “two hit” the-
ory of multiple organ dysfunction
suggests that a period of inadequate
perfusion may in fact prime the in-
flammatory cascade. A second, often rela-
tively minor, insult occurring some
time later can then cause an inordinate
systemic inflammatory response lead-
ing to multiple organ dysfunction, the
major cause of late death in trauma pa-
ients in the intensive care unit. Expe-
rience indicates that some injuries are
of such a magnitude that they will
cause multiple organ dysfunction to
occur from the onset. The magnitude
of injury that is required to prime the in-
flammatory response into a suscep-
tible state is unknown, although in all
likelihood the patient’s premorbid
state is also an important factor.12

The hypothesis that the gut is the
“motor of multiple organ failure” was
introduced a number of years ago.14,15
There has been extensive research into
the gut-liver axis and in particular into
the gut-barrier injury that occurs in
hypovolemic shock. The potential for
bacterial translocation has been well
demonstrated in rodent models of trauma. The studies of Deitch and as-
associates,16–21 and Alexander and col-
leagues22,23 demonstrated in their ani-
mal models that hemorrhagic shock,
endotoxic shock and burn injury cause
changes in the enterocyte and other
components of the gut barrier that al-
low bacteria to translocate into the
portal and systemic circulation. A
number of years ago.14,15
During transport of the trauma pa-
ient, systemic hemodynamic parame-
ters are relied upon to indicate ade-
quate perfusion. That the splanchnic
circulation responds differently to low
flow states is well documented.24,25

The advent of the gastric tonometer
has provided a new tool that can mea-
sure perfusion to this important re-
gional bed. Most of the experience
with the tonometer to date has been
gained in the intensive care unit dur-
ing the post-resuscitation phase, and
its utility in the pre-hospital setting
has not been determined. It may,
however, find an important role in the
trauma resuscitation room to help
provide more definitive assessment of
resuscitation to that point.30

Resuscitation of patients with
closed head injury

In Canada, where the majority of
trauma is due to a blunt mechanism
of injury, the injuries are often multiple.
In severe trauma, closed head injury is
present in 60% of patients (patients on
the University of Alberta Hospitals
Trauma Registry with an injury sever-
ity score of 12 or more). The outcome
from closed head injury is determined
primarily by the severity of the injury
and the age of the patient. Additional
important cofactors are the presence
of hypoxia and hypotension.31–33 Re-
cent experimental and clinical studies
on closed head injuries have high-
lighted the importance of maintain-
ing cerebral perfusion pressure and have
suggested that the outcome may be
improved if cerebral perfusion pres-
sure is maintained at more than
70 mm Hg. Cerebral perfusion pres-
sure (CPP) is a function of mean arte-
rial pressure (MAP) and intracranial
pressure (ICP): CPP = MAP − ICP.
To use an aggressive approach in the
measurement of cerebral perfusion
pressure it is necessary to measure
both components of this equation.
MAP measurement is routine, but
ICP monitoring requires the setting
of an intensive care unit. It has been
recommended that resuscitation
guided by the CPP be carried out in
closed head injury when the Glasgow Coma Score (GCS) is less than 8, with a significant grade of injury on computed tomography, and for injuries of lesser magnitude when the patient is older than 40 years.7

In the pre-hospital setting it is not possible to measure ICP, but in any patient with a GCS of 9 or less, the resuscitating team should assume that the ICP is elevated. To achieve a perfusion pressure greater than 70 mm Hg, the mean arterial pressure would need to be maintained in the range of 90 to 105 mm Hg, assuming an ICP of 20 to 25 mm Hg in patients with this degree of injury. The prevalence of hypotension during the transport phase of blunt head trauma, particularly in those cases originating in rural areas, is not well documented. There are many causes of hypotension during transport, some of which are iatrogenic due to sedatives, analgesics and paralysing agents. The negative impact of any period of hypoperfusion to the brain must be understood, and vigilance in preventing such episodes must be maintained.3,24

Delayed Resuscitation

In a recent study of patients with penetrating torso trauma, Bickell and associates,10 in a prospective study carried out in a large urban trauma system on hypotensive penetrating torso trauma victims, challenged the traditional concept that prompt intravenous fluid administration with isotonic crystalloids and packed red blood cells is beneficial when they are administered in advance of definitive surgical management of the bleeding site. The average transport time was less than 15 minutes and the average total preoperative time was less than 90 minutes. The death rate was higher in patients who underwent immediate fluid resuscitation. Based on experimental evidence25,26 and on the results of this study, the improved survival found in those patients who had their resuscitation delayed until the bleeding had been surgically controlled was attributed to less hemorrhage from the injury site. The argument against immediate resuscitation in this setting is that it reverses vasoconstriction of injured blood vessels, dislodges early thrombus and, when given in large volumes, dilutes coagulation factors and changes viscosity to decrease the resistance to flow. All of these changes potentially aggravate blood loss or induce a secondary hemorrhage. This is an important study and should prompt many investigators to critically evaluate their practice in their own environment. Bickell and associates10 correctly pointed out that their study was not intended to question the value of fluid administration in penetrating torso trauma but rather the timing of its administration. They concluded that in the face of uncontrolled blood loss, volume resuscitation is deleterious when given before early surgical control of the bleeding site.

Extrapolating this study to the trauma patient population in Canada must be done with great caution. First, penetrating trauma makes up a very small proportion of the trauma patient population and, second, the number of patients with penetrating torso injuries who undergo surgery within 90 minutes of their injury is even smaller. The concept that there may be an appropriate threshold blood pressure (or other easily measurable end point) below normal values, to which patients with long preoperative intervals should be resuscitated bears further thought and investigation.27

Conclusions

The primary objective of any trauma system is early and appropriate definitive care. To delay is to leave the patient more susceptible to multiple organ dysfunction and other complications of critical illness.19,29 The trauma patient population is very heterogeneous in terms of complexity and type of injury. In blunt trauma, particularly with associated closed head injury, immediate resuscitation remains the accepted standard of care.

For transport times of less than 30 minutes an emergency medical system should “scoop and run,” delivering the patient to the trauma centre where resuscitation and definitive care can be delivered simultaneously. For transport times greater than 60 minutes, it is possible to stratify the multiply injured patient population into those in whom maintenance of regional perfusion to the gut and kidneys is best maintained with an effective circulating fluid volume and those who require defence of blood pressure while avoiding overhydration (head, spine and chest injuries). The end points of resuscitation in this longer transport group must be individually monitored by ongoing evaluation of the patient’s clinical status, and it is worth reiterating that iatrogenic causes of hypotension (sedatives and analgesics) must be avoided. Organ perfusion, as demonstrated by urinary output greater than 1.0 mL/kg, is an appropriate end point. In the presence of severe head injury (GCS less than 9), the maintenance of an MAP in the range 90 to 105 mm Hg should ensure adequate cerebral perfusion. Unfortunately, if this is achieved with large volumes of isotonic fluids, exacerbation of cerebral edema and its sequelae may cause significant morbidity and mortality. It is in this group of patients that newer modalities of resuscitation (hypertonic saline with dextran, inotropes) may prove beneficial; however, clinical studies addressing these issues in patients with pro-
The concept of delayed resuscitation in penetrating torso trauma deserves more investigation in the Canadian experience. Animal models of controlled blood loss suggest that the gut barrier remains physically intact for up to 4 hours with an MAP of 40 mm Hg. Experimentially it appears, however, that this degree of shock primes the inflammatory response to make it more susceptible to a second insult within 48 hours. What the threshold blood pressure might be and what threshold duration of hypoperfusion is required to prime the inflammatory cascade is unknown and likely is multifactorial in nature.

The timing and degree of resuscitation required varies according to the type and severity of injury and the proximity to definitive care. Individual patients must be assessed for the priorities of treatment according to their injury pattern. Few well-controlled prospective studies on fluid resuscitation and outcomes applicable to the Canadian trauma experience have been reported. On reviewing the literature, what is apparent is that delays in definitive care lead to greater morbidity and mortality and that periods of hypotension and hypoxia in association with a severe head injury have a drastic impact on outcome. The tendency to treat all injury victims in a similar manner, to the same end points, needs to be challenged. In light of the recent literature it appears that an even more vigorously individualistic approach to the assessment of the trauma patient’s priorities should be taken.

References

5. Committee on Trauma, American College of Surgeons: Advanced Trauma Life Support Manual, American College of Surgeons, Chicago, Ill, 1989

27. Turnbull R, Talbot JA, Hamilton SM: Hemodynamic changes and gut barrier function in sequential hemor-
Patients with diabetes mellitus are predisposed to develop foot ulcers because of their peripheral neuropathy, and go on to develop secondary infection of these ulcers because of their impaired immune system. Some patients have systemic signs of infection, including fever and glycosuria, while local signs may be minimal. Aggressive treatment, including hospitalization, early surgical exploration, and intravenous antibiotics, is important if the foot is to be saved.

Physical examination of the foot is frequently misleading as a means of determining the extent of infection. These infections are usually polymicrobial and are often associated with gas-producing organisms. A plain roentgenogram of the foot may identify gas as well as evidence of bone destruction. The status of the foot circulation can usually be determined by physical examination and subsequent vascular laboratory studies. In patients with vascular disease, arteriography may be performed subsequently when infection has been controlled. A gallium scan will not provide any more useful information than a foot roentgenogram. These patients require early exploration and wide debridement of necrotic tissue in the foot. The foot can often be salvaged even when the initial assessment would appear to indicate the necessity for early amputation.

Reference