Can preoperative computed tomography of the chest predict completeness of the major pulmonary fissure at surgery?

Colin Schiem an, MD, BSc*
John H. MacGregor, MD†
Elizabeth Kelly, BSc, MSc*
Andrew Graham, MD, MHS*
Sean P. McFadden, MD*
Gary Gelfand, MD, MSc*
Sean C. Grondin, MD, MPH*

From the *Division of Thoracic Surgery and the †Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alta.

This paper was awarded the Robert J. Ginsberg prize for best project at the annual meeting of The Canadian Association of Thoracic Surgeons, as part of the Canadian Surgery Forum in Victoria, BC, Sept. 10–13, 2009.

Accepted for publication May 28, 2010

Correspondence to:
Dr. C. Schiem an
Division of Thoracic Surgery
Foothills Hospital
1403–29th St. NW
Calgary AB T2N 2T9
colin.schieman@gmail.com

DOI: 10.1503/cjs.007910

Background: An incomplete major pulmonary fissure can make anatomic lung resection technically more difficult and may increase the risk of complications, such as prolonged postoperative air leak. The objective of this study was to determine if preoperative computed tomography (CT) of the chest could accurately predict the completeness of the major pulmonary fissure observed at the time of surgery.

Methods: From October 2008 to June 2009, patients at a single university institution were enrolled if they underwent surgery for a pulmonary nodule, mass or known cancer. At the time of surgery, completeness of the major pulmonary fissure was graded 1 if pulmonary lobes were entirely separate, 2 if the visceral cleft was complete with an exposed pulmonary artery at the base with some parenchyma fusion, 3 if the visceral cleft was only evident for part of the fissure without a visible pulmonary artery and 4 if the fissure was absent. The preoperative CT scan of each patient was graded by a single, blinded chest radiologist using the same scale. We used the Pearson \(\chi^2 \) test with 2-tailed significance to test the independence of the operative and radiologic grading.

Results: In 48% (29 of 61) of patients, the radiologic and operative grading were the same. Of those graded differently, 94% (30 of 32) were within 1 grade. Despite this agreement, we observed no statistically significant correlation between the operative and radiologic grading (\(p = 0.24 \)).

Conclusion: The major fissure can often be well-visualized on a preoperative CT scan, but preoperative CT cannot accurately predict the completeness of the major pulmonary fissure discovered at surgery.

Contexte : Une scissure pulmonaire majeure incomplète peut rendre la résection pulmonaire anatomique plus difficile sur le plan technique et accroître le risque de complications, notamment la fuite d’air prolongée après l’intervention. Cette étude visait à déterminer si une tomodensitométrie (TDM) pulmonaire préopératoire pourrait prédire avec précision le caractère complet de la scissure pulmonaire observée au moment de l’intervention chirurgicale.

Méthodes : D’octobre 2008 à juin 2009, les patients d’un même établissement universitaire ont été inscrits à l’étude s’ils subissaient une intervention chirurgicale pour un nodule, une masse ou un cancer connu au poumon. Au moment de l’intervention, le caractère complet de la scissure pulmonaire a été coté 1 si les lobes pulmonaires étaient entièrement séparés, 2 si le sillon branchial était complet et conjugué à une exposition de l’artère pulmonaire à la base et à une fusion du parenchyme, 3 si le sillon branchial était évident dans une partie seulement de la scissure sans que l’artère pulmonaire soit visible, et 4 s’il n’y avait pas de scissure. Le résultat de la TDM préopératoire de chaque patient a été coté par 1 seul radiologue travaillant à l’insu et utilisant la même échelle. Nous avons utilisé le test \(\chi^2 \) de Pearson avec signification bilatérale pour vérifier l’indépendance de l’évaluation opératoire et radiologique.

Résultats : Chez 48 % des patients (29 sur 61), les évaluations radiologique et opératoire ont été identiques. Parmi ceux qui ont fait l’objet d’une évaluation différente, l’écart de note ne dépassait pas 1 chez 94 % (30 sur 32). En dépit de cette convergence, nous n’avons observé aucun lien statistiquement significatif entre l’évaluation opératoire et radiologique (\(p = 0.24 \)).

Conclusion : Une TDM préopératoire permet souvent de bien visualiser la scissure majeure, mais elle ne peut prédire avec exactitude le caractère complet de la scissure pulmonaire majeure au moment de l’intervention chirurgicale.
Anatomic lung resections are the most commonly performed thoracic surgical procedure. These resections are typically performed as the primary, curative treatment for non–small cell lung cancer. The technical difficulty of a conventional anatomic lung resection, which most often involves the removal of a complete pulmonary lobe, is largely determined by the completeness of the major pulmonary fissure. The pulmonary fissure is the anatomic division between the lobes of the lung, and it may exist anywhere on a continuum from complete anatomically distinct lobes to fused, indistinguishable lobes. The depth of the cleft within the fissure is important for anatomic resections because it allows the safe identification of the pulmonary artery and the bronchus. A fused or incomplete fissure has to be divided surgically, which makes for a more challenging surgery. Surgical division of the fissure is also thought to increase the risk of postoperative complications, including prolonged air leak, which is the most common cause of prolonged stay in hospital after lung resection. Therefore, the completeness of the major pulmonary fissure is a critical component in determining the complexity of a lung resection and, potentially, postoperative recovery. If a patient’s preoperative computed tomography (CT) scan could accurately predict the completeness of the major pulmonary fissure, it may impact the thoracic surgeon’s choice of approach (thoracotomy v. video-assisted), the suitability of cases for trainees and the patient’s anticipated recovery time.

METHODS

This study was granted ethical and scientific approval by the Calgary Health Region’s Centre for Advancement of Health Institutional Review Board.

Patient eligibility

Inclusion was restricted to patients 18 years or older who underwent either thoracotomy or video-assisted thoracoscopic surgery (VATS) for a lung nodule, mass or known cancer performed by a fellowship-trained thoracic surgeon (A.G., S.P.M., G.G. or S.C.G.) at the Foothills Hospital in Calgary, Alta., from October 2008 to June 2009. Patients were excluded if they had some component of pleural disease, such as pleural effusions, tumours involving the pulmonary fissure, empyema, hemothorax or extensive adhesions, owing to potential confounding of radiologic interpretation.

Grading of the pulmonary fissure

The fissure is not commonly graded in routine thoracic care, and there is no agreed-on scale or technique of grading the completeness of the major pulmonary fissure. Furthermore, there is no validated classification of the pulmonary fissures in the published literature. We modified a previously published but not validated anatomic classification system for the pulmonary fissures to create an intuitive, simple and reproducible classification system for grading the pulmonary fissures that could be used by the 4 participating surgeons and the study radiologist. At the time of surgery, completeness of the major pulmonary fissure was graded as 1 if the pulmonary lobes were entirely separate, 2 if the visceral cleft was complete with an exposed pulmonary artery at the base with some parenchymal fusion, 3 if the visceral cleft was only evident for part of the fissure without a visible pulmonary artery and 4 if the fissure was absent. The preoperative CT scan of each enrolled patient was graded by a single, blinded chest radiologist (J.H.M.) using the same scale. When multiple CT

![Fig. 1. An example of a radiologic grade 1 complete fissure, as seen on a computed tomography scan with coronal reformatting. The fissure extends to (A) the mediastinum superiorly, (B) the pulmonary artery medially and (C) the mediastinum inferiorly.](image-url)
Statistical analysis

We used the Pearson χ^2 test with 2-tailed significance to test the independence of the operative and radiologic grading. The primary analysis compared operative and radiologic grades for all included patients. Owing to concerns about the difficulty of differentiating grade 2 from grade 3 both intraoperatively and radiologically, we performed secondary χ^2 analysis comparing patients more broadly categorized as having a complete fissure (grades 1 and 2) with those categorized as having an incomplete fissure (grade 3 or 4). To investigate the potential influence of CT scan resolution on the accuracy of the radiologic grade, secondary analysis was performed for all patients with CT scans obtained with a slice thickness less than 5 mm.

Results

The data set is summarized in Table 2. We included 61 of a total 72 enrolled patients in our analyses. Patients were well-distributed among the 4 participating surgeons. Seventy-seven percent of the procedures (47 of 61) were performed for known lung cancers. Fifty-two percent (32 of 61) of the patients had an open thoracotomy.

Intraoperative and radiologic grading

Table 3 demonstrates the operative and radiologic grading of the included patients. Forty-eight percent (29 of 61) of the patients had the same intraoperative and radiologic grading. Of those not assigned the same grade, 94% (30 of 32) were within 1 grade. Despite this agreement, the Pearson χ^2 test did not demonstrate a significant correlation between intraoperative and radiologic grading for completeness of the major pulmonary fissure ($p = 0.24$).

Further subset analysis of the data was performed with the scale dichotomized to those with a complete fissure
(i.e., the fissure extends to the exposed pulmonary artery: grades 1 and 2), and to those with an incomplete fissure (i.e., the pulmonary artery is not visible: grades 3 and 4). This dichotomization improved the correlation between intraoperative and radiologic grading, but the correlation remained nonsignificant ($p = 0.10$).

When inclusion was restricted to only those patients who had CT scans with a slice thickness less than 5 mm, correlation between intraoperative and radiologic grading of completeness of the major pulmonary fissure improved but remained nonsignificant ($p = 0.22$).

Discussion

We were not able to predict the completeness of the major pulmonary fissure observed at the time of surgery based on the preoperative CT scan. Given an absence of existing literature investigating this question, it is difficult to understand or extrapolate these findings in a broader context. However, there is little question that the completeness of the major pulmonary fissure is one of the key determinants of technical difficulty when performing a pulmonary lobectomy. When the lobes are completely separate and the pulmonary artery is visible, there is minimal lung parenchyma to be divided and minimal arterial dissection required, facilitating safe and easy arterial transection. A fused fissure, on the other hand, classically requires extensive division of lung parenchyma, which increases bleeding and the risk of pulmonary artery injury and air leak. The increased risk of air leak following division of an incomplete fissure has been substantiated in dog and human studies, demonstrating that these areas of parenchymal fusion provide a pathway for collateral ventilation to adjacent lobes and can prevent atelectasis of an entirely occluded lobar bronchus.

Despite the demonstrated importance of the pulmonary fissure, it is only recently that investigators have studied their ability to assess the fissure with imaging modalities such as CT. This may in part be because of the limitations of traditional CT. For example, Quint and colleagues reported poor sensitivity in detecting transfissural tumour extension on contiguous axial CT scans with a slice thickness of 10 mm. Contrary to this, Takahashi and colleagues demonstrated that with advanced CT scanning techniques with 0.5- to 1-mm collimation and multiplanar reformatting, the interlobar fissure could be consistently visualized as a sharp line. Wei and colleagues have demonstrated that with such high-resolution CT data 3-dimensional reconstruction of the lungs is possible, allowing for more accurate identification of the pulmonary fissures. Unfortunately, these studies had only radiologic outcomes with no clinical or surgical validation. Despite a lack of significant correlation between our intraoperative and radiologic grading of completeness of the major pulmonary fissure subjectively, we found that the use of multiplanar reformat, often in the coronal plane, provided us with much clearer images of the pulmonary fissure. On conventional axial CT scans the fissure is typically a blurred white shadow or area of lucency between upper and lower lobes and is considerably more difficult to characterize in any meaningful way. On coronal reformatting the fissure generally resolves to a clearly identifiable white line, which can be followed easily from image to image. In fact, the utility of coronal reformatting in assessing the completeness of the major pulmonary fissure was one of the surprises of this study. To our knowledge, the use of coronal reformatting as it relates to the identification and characterization of the fissure has not been studied or published elsewhere. As imaging quality and processing continues to improve, it may one day be possible to accurately predict the completeness of the major pulmonary fissure.

With the increasing use of the VATS approach to pulmonary lobectomy, several authors have described a “fissureless” or “no-fissure” technique for anatomic pulmonary lobectomy. In essence, with a fissureless technique, the lobectomy is conducted from a top–down or bottom–up direction, with sequential isolation and endoscopic stapled transection of structures, such as the pulmonary vein, bronchus, pulmonary arterial branches and lung parenchyma, without ever formally dissecting the interlobar pulmonary artery in the fissure. Advocates for this approach cite a reduced rate of postoperative air leak as the key advantage of avoiding dissection in the fissure. It is possible that if fissureless techniques become widely adopted, then the grading of completeness of the major pulmonary fissure would become less important, but at the present time dissection in the interlobar fissure remains a common technique.

This study did not confirm a significant correlation between the intraoperative and radiologic grading of completeness of the major pulmonary fissure as it relates to pulmonary resection. To our knowledge, this relation has not been previously investigated. It is possible that the nonsignificant result in this study relates to our small sample size, a flawed definition of fissure completeness or the wide-ranging image formatting and quality. Further improvements in imaging may allow for better identification and characterization of the pulmonary fissures.

Conclusion

We were not able to accurately predict the completeness of the major pulmonary fissure found at the time of surgery based on preoperative CT scans of the chest. Despite a lack of significance, we found that coronal reformatting aided in the identification of the major pulmonary fissure, proximity of tumours to the fissure and pulmonary arterial anatomy as it relates to surgical planning. Future improvements in imaging may permit better characterization of the pulmonary fissures and improve surgical planning.
RECHERCHE

Competing interests: This study did not receive financial or material support from any source.

Contributors: All authors assisted with study design, data analysis and article review and approved the article’s publication. Drs. Schieman, Kelly, Graham, McFadden, Gelfand and Grondin acquired the data. Drs. Schieman, Kelly and Grondin wrote the article.

References

Canadian Surgery FORUM

The Canadian Surgery FORUM canadien de chirurgie will hold its annual meeting Sept. 15–18, 2011, in London, Ontario. This interdisciplinary meeting provides an opportunity for surgeons across Canada with shared interests in clinical practice, continuing professional development, research and medical education to meet in a collegial fashion. The scientific program offers material of interest to academic and community surgeons, residents in training and students.

The major sponsoring organizations include the following:

- The Canadian Association of General Surgeons
- The Canadian Society of Colon and Rectal Surgeons
- The Canadian Association of Thoracic Surgeons
- The Canadian Society of Surgical Oncology

Other participating societies include the American College of Surgeons, the Canadian Association of Bariatric Physicians and Surgeons, the Canadian Association of University Surgeons, the Canadian Hepato-Pancreato-Biliary Society, the Canadian Undergraduate Surgical Education Committee, the James IV Association of Surgeons, the Québec Surgical Association and the Trauma Association of Canada.

For registration and further information contact surgeryforum@rcpsc.edu; www.cags-accg.ca.

FORUM canadien de chirurgie

Les principales organisations qui parrainent cette réunion sont les suivantes :

- L’Association canadienne des chirurgiens généraux
- La Société canadienne des chirurgiens du côlon et du rectum
- La Société canadienne de chirurgie thoracique
- La Société canadienne d’oncologie chirurgicale

Le *American College of Surgeons*, l’Association canadienne des médecins et chirurgiens spécialistes de l’obésité, l’Association québécoise de chirurgie, le *Canadian Association of University Surgeons*, le *Canadian Hepato-Pancreato-Biliary Society*, le *Canadian Undergraduate Surgical Education Committee*, le *James IV Association of Surgeons* et l’Association canadienne de traumatologie sont au nombre des sociétés qui appuient cette activité.

Pour vous inscrire, veuillez communiquer à surgeryforum@rcpsc.edu; www.cags-accg.ca.