Troponin T monitoring to detect myocardial injury after noncardiac surgery: a cost–consequence analysis

Troponin T monitoring to detect myocardial injury after noncardiac surgery: a cost–consequence analysis

Can J Surg 2018;61(3):185-194 | PDF | Appendix

Giovanna Lurati Buse, MD, MSc; Braden Manns, MD, MSc; Andre Lamy, MD; Gordon Guyatt, MD, MSc; Carisi A. Polanczyk, MD; Matthew T.V. Chan, MD; Chew Yin Wang, MBChB; Juan Carlos Villar, MD, PhD; Alben Sigamani, MD; Daniel I. Sessler, MD; Otavio Berwanger, MD; Bruce M. Biccard, MBChB; Rupert Pearse, MD; Gerard Urrútia, MD; W Szczeklik, MD, PhD; Ignacio Garutti, MD, PhD; Sadeesh Srinathan, MD, MSc; German Malaga, MD, MSc; Valsa Abraham, MD; Clara K. Chow, MBBS, PhD; Michael J. Jacka, MD, MSc; Maria Tiboni, MD; Gareth Ackland, MD, PhD; Danielle Macneil, MD; Robert Sapsford, MD; Martin Leuwer, MD, PhD; Yannick Le Manach, MD; Philip J. Devereaux, MD, PhD

Abstract

Background: Myocardial injury after noncardiac surgery (MINS) is a mostly asymptomatic condition that is strongly associated with 30-day mortality; however, it remains mostly undetected without systematic troponin T monitoring. We evaluated the cost and consequences of postoperative troponin T monitoring to detect MINS.

Methods: We conducted a model-based cost–consequence analysis to compare the impact of routine troponin T monitoring versus standard care (troponin T measurement triggered by ischemic symptoms) on the incidence of MINS detection. Model inputs were based on Canadian patients enrolled in the Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) study, which enrolled patients aged 45 years or older undergoing inpatient noncardiac surgery. We conducted probability analyses with 10 000 iterations and extensive sensitivity analyses.

Results: The data were based on 6021 patients (48% men, mean age 65 [standard deviation 12] yr). The 30-day mortality rate for MINS was 9.6%. We determined the incremental cost to avoid missing a MINS event as $1632 (2015 Canadian dollars). The cost-effectiveness of troponin monitoring was higher in patient subgroups at higher risk for MINS, e.g., those aged 65 years or more, or with a history of atherosclerosis or diabetes ($1309).

Conclusion: The costs associated with a troponin T monitoring program to detect MINS were moderate. Based on the estimated incremental cost per health gain, implementation of postoperative troponin T monitoring seems appealing, particularly in patients at high risk for MINS.

Résumé

Contexte : Les lésions myocardiques après chirurgie non cardiaque (CNC) sont majoritairement asymptomatiques et fortement associées au risque de mortalité dans les 30 jours; toutefois, dans la plupart des cas, elles ne sont pas détectées en l’absence d’une surveillance systématique de la troponine T. Nous avons évalué les coûts et les conséquences d’une telle surveillance pour détecter les lésions myocardiques après CNC.

Méthodes : Nous avons mené une analyse coût–conséquence modélisée pour comparer la surveillance systématique de la troponine T aux soins habituels seuls (mesure de la troponine T seulement s’il y a présence de symptômes d’ischémie) sur la fréquence de détection de lésions myocardiques après CNC. Les données ayant servi à l’analyse provenaient des patients canadiens ayant participé à l’étude de cohorte VISION, qui visait à évaluer les complications vasculaires chez les patients de 45 ans et plus ayant subi une CNC. Nous avons mené des analyses de probabilité avec 10 000 itérations et des analyses de sensibilité approfondies.

Résultats : Les données portaient sur 6021 patients (48 % du sexe masculin; âge moyen de 65 ans [écart-type de 12 ans]). Le taux de mortalité dans les 30 jours associé à une lésion myocardique après CNC était de 9,6 %. Nous avons déterminé que le coût marginal de la détection de la présence d’une lésion par surveillance de la troponine T était de 1632 $ (dollars canadiens en 2015). Le rapport coût–efficacité était plus bas pour les sous-groupes de patients à risque élevé de lésion myocardique après CNC, comme les patients de 65 ans et plus ou ceux ayant des antécédents d’athérosclérose ou de diabète (1309 $), que pour leurs pairs.

Conclusion : Les coûts associés à un programme de surveillance de la troponine T pour détecter les lésions myocardiques après CNC étaient modérés. Le coût marginal estimé par gain de santé indique que la mise en oeuvre de ce type de programme pourrait être une option intéressante, surtout pour les patients à risque élevé de lésion myocardique après CNC.


Accepted Nov. 17, 2017

Affiliations: From the University Hospital of Düsseldorf, Düsseldorf, Germany (Lurati Buse); the University Hospital of Basel, Basel, Switzerland (Lurati Buse); the University of Calgary, Calgary, Alta. (Manns); McMaster University, Hamilton, Ont. (Lamy, Guyatt, Tiboni, Devereaux); the Hospital de Clínicas de Porto Alegre, Universidade Federal de Rio Grande do Sul, Brazil (Polanczyk); the Chinese University of Hong Kong, Sha Tin, NT, Hong Kong (Chan); the University of Malaya, Kuala Lampur, Malaysia (Wang); the Fundación Cardioinfantil – Instituto de Cardiología, Bogotá and Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia (Villar); St. John’s Medical College and Research Institute, Bangalore, India (Sigamani); the Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio (Sessler); the HCor Research Institute (Hospital do CoraÇão), São Paulo, Brazil (Berwanger); the Groote Schuur Hospital and University of CapeTown, Cape Town, South Africa (Biccard); Barts and The London School of Medicine and Dentistry, London, UK (Pearse); the Hospital de Sant Pau, Barcelona, Spain (Urrútia); the Jagiellonian University Medical College, Krakow, Poland (Szczeklik); the Hospital General Universitario Gregorio Marañón, Madrid, Spain (Garutti); the University of Manitoba, Winnipeg, Man. (Srinathan); the Universidad Peruana Cayetano Heredia, Lima, Peru (Malaga); the Christian Medical College, Ludhiana, India (Abraham); the George Institute for Global Health, University of Sydney, Sydney, Australia (Chow); the University of Alberta Hospital, Edmonton, Alta. (Jacka); the University College London, London, UK (Ackland); the London Health Sciences Centre, London, Ont. (Macneil); the University of Leeds, Leeds, UK (Sapsford); the Royal Liverpool Broadgreen University Hospital Trust, Liverpool, UK (Leuwer); and the HÔpital Pitié-Salpêtrière, Paris, France (Le Manach).

Funding: Canadian Institutes of Health Research (6 grants) (Ottawa, Ontario, Canada); Heart and Stroke Foundation of Ontario (2 grants) (Toronto, Ontario, Canada); Academic Health Science Centre Alternative Funding Plan Innovation Fund grant (Toronto, Ontario, Canada); Population Health Research Institute grant (Hamilton, Ontario, Canada); Clarity Research Group grant; Surgical Associates Research Grant, Department of Surgery, McMaster University (Hamilton, Ontario, Canada); Hamilton Health Sciences New Investigator Fund grant (Hamilton, Ontario, Canada); Hamilton Health Sciences grant (Hamilton, Ontario, Canada); Ontario Ministry of Resource and Innovation grant (Toronto, Ontario, Canada); Stryker Canada (Waterdown, Ontario, Canada); Department of Anesthesia, McMaster University (2 grants) (Hamilton, Ontario, Canada); Department of Medicine, Saint Joseph’s Healthcare (2 grants) (Hamilton, Ontario, Canada); Father Sean O’Sullivan Research Centre (2 grants) (Hamilton, Ontario, Canada); Department of Medicine, McMaster University (2 grants) (Hamilton, Ontario, Canada); Roche Diagnostics Global Office (3 grants) (Basel, Switzerland); Hamilton Health Sciences Summer Studentships (6 grants) (Hamilton, Ontario, Canada); Department of Clinical Epidemiology and Biostatistics (now Health Research Methods, Evidence, and Impact) grant, McMaster University (Hamilton, Ontario, Canada); Division of Cardiology grant, McMaster University (Hamilton, Ontario, Canada); Canadian Network and Centre for Trials Internationally grant (Hamilton, Ontario, Canada); Winnipeg Health Sciences Foundation Operating Grant (Winnipeg, Manitoba, Canada); Department of Surgery Research Grant, University of Manitoba (2 grants) (Winnipeg, Manitoba, Canada); Diagnostic Services of Manitoba Research Grant (2 grants) (Winnipeg, Manitoba, Canada); Manitoba Medical Services Foundation grant (Winnipeg, Manitoba, Canada); Manitoba Health Research Council grant (Winnipeg, Manitoba, Canada); Faculty of Dentistry Operational Fund grant, University of Manitoba (Winnipeg, Manitoba, Canada); Department of Anesthesia (now Department of Anesthesia and Perioperative Medicine) grant, University of Manitoba (Winnipeg, Manitoba, Canada); University Medical Group Start-up Fund, Department of Surgery, University of Manitoba (Winnipeg, Manitoba, Canada), Fellowship for prospective researchers, Swiss National Science Foundation (Bern, Switzerland)

Competing interests: Roche Diagnostics provided the troponin T assays and financial support for the VISION study. P. Devereaux has received other funding from Roche Diagnostics and Abbott Diagnostics for investigator-initiated studies. No other competing interests declared.

Contributors: G. Lurati Buse, A. Lamy, G. Guyatt, C. Polanczyk, O. Berwanger, V. Abraham, Y. Le Manach and P. Devereaux designed the study. G. Lurati Buse, C. Polanczyk, M. Chan, C.Y. Wang, J. Villar, A. Sigamani, O. Berwanger, B. Biccard, R. Pearse, G. Urrútia, I. Garutti, S. Srinathan, G. Malaga, V. Abraham, M. Jacka, M. Tiboni, G. Ackland, D. Macneil, R. Sapsford and M. Leuwer acquired the data, which G. Lurati Buse, B. Manns, A. Lamy, G. Guyatt, C. Polanczyk, C.Y. Wang, D. Sessler, R.W. Szczeklik, S. Srinathan, G. Malaga, C. Chow, Y. Le Manach and P. Devereaux analyzed. G. Lurati Buse, C. Polanczyk and V. Abraham wrote the article, which all authors reviewed and approved for publication.

DOI: 10.1503/cjs.010217

Correspondence to: G. Lurati Buse, Anesthesiology Department, University Hospital of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany, giovanna.luratibuse@med.uni-duesseldorf.de